Package: lmtp 1.4.1

lmtp: Non-Parametric Causal Effects of Feasible Interventions Based on Modified Treatment Policies

Non-parametric estimators for casual effects based on longitudinal modified treatment policies as described in Diaz, Williams, Hoffman, and Schenck <doi:10.1080/01621459.2021.1955691>, traditional point treatment, and traditional longitudinal effects. Continuous, binary, categorical treatments, and multivariate treatments are allowed as well are censored outcomes. The treatment mechanism is estimated via a density ratio classification procedure irrespective of treatment variable type. For both continuous and binary outcomes, additive treatment effects can be calculated and relative risks and odds ratios may be calculated for binary outcomes.

Authors:Nicholas Williams [aut, cre, cph], Iván Díaz [aut, cph]

lmtp_1.4.1.tar.gz
lmtp_1.4.1.zip(r-4.5)lmtp_1.4.1.zip(r-4.4)lmtp_1.4.1.zip(r-4.3)
lmtp_1.4.1.tgz(r-4.4-any)lmtp_1.4.1.tgz(r-4.3-any)
lmtp_1.4.1.tar.gz(r-4.5-noble)lmtp_1.4.1.tar.gz(r-4.4-noble)
lmtp_1.4.1.tgz(r-4.4-emscripten)lmtp_1.4.1.tgz(r-4.3-emscripten)
lmtp.pdf |lmtp.html
lmtp/json (API)
NEWS

# Install 'lmtp' in R:
install.packages('lmtp', repos = c('https://nt-williams.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nt-williams/lmtp/issues

Datasets:

On CRAN:

causal-inferencecensored-datalongitudinal-datamachine-learningmodified-treatment-policynonparametric-statisticsprecision-medicinerobust-statisticsstatisticsstochastic-interventionssurvival-analysistargeted-learning

6.21 score 59 stars 78 scripts 482 downloads 13 exports 30 dependencies

Last updated 17 days agofrom:9bec661967 (on devel). Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-winOKNov 04 2024
R-4.5-linuxOKNov 04 2024
R-4.4-winOKNov 04 2024
R-4.4-macOKNov 04 2024
R-4.3-winOKNov 04 2024
R-4.3-macOKNov 04 2024

Exports:create_node_listevent_locfipsilmtp_contrastlmtp_controllmtp_ipwlmtp_sdrlmtp_sublmtp_survivallmtp_tmlestatic_binary_offstatic_binary_ontidy

Dependencies:abindassertthatbackportsbitopscaToolscheckmateclicodetoolscvAUCdata.tabledigestforeachfuturefuture.applygamgenericsglobalsgplotsgtoolsisotoneiteratorsKernSmoothlistenvnnlsorigamiparallellyprogressrR6ROCRSuperLearner